
Software Fault Prediction Model for Embedded
Systems: A Novel finding

Pradeep Singh1, Shrish Verma2
1,2National Institute of Technology, Raipur, India

Abstract— Software testing plays a vital role in software
development especially when the software developed is
mission, safety and business critical applications. Software
testing is the most time consuming and costly phase.
Prediction of a modules info fault-prone and non fault prone
prior to testing is one of the cost effective technique. Predicting
a safe module as faulty increases the cost of projects by more
cautious and better-test resources allocation for those
modules, whereas prediction of faulty code as fault free code
end up in under-preparation and may leave modules untested
this may cause accidental failure and lead towards massive
loss . In this research, we present a novel fault prediction
technique that reduces the probability of false alarm (pf) and
increases the precision for detection of faulty modules. The
general expectation from a predictor is to get very high
probability of false alarm (pf) to get more reliable and quality
software product. We have taken embedded systems software
for this study and the goal is to predict as many faulty modules
as possible. In this paper we apply a supervised discretization
for pre-processing and clustering based classification for
prediction of a modules info fault-prone (fp) and non fault-
prone (nfp) modules. To evaluate this approach we perform an
extensive comparative experimental study for the effectiveness
of our method with benchmark results for the same embedded
software’s. Our fault prediction model produces better results
than the standard and benchmark approaches for software
fault prediction.
Results from our proposed model significantly decreases
probability of false alarm (pf) down to 9% while increasing
precision and balance rates at 68% and 79% respectively.

Keywords Software fault prediction, supervised discretization,
and software metric.

I. INTRODUCTION

The demand of highly reliable and secure system is
increasing day by day. To fulfill these demands by the ever-
increasing power of computing devices, systems are
growing complex. Due to the complexity of these systems,
effort and cost incur in development is increasing. Software
complexity is the main source of failure and potential
hazards. High quality software within allocate budget
requires a careful planning and cost effective use of testing
resources. Mission critical or safety and business critical
system needs more reliability and therefore requires more
testing time and resources.

Testing phase is the most expensive, time and resource
consuming phase of the software development lifecycle
requires approximately 50% of the whole project schedule
[1, 2]. So an effective and intelligent test strategy can
minimize the time of testing by using resources efficiently.
Various methods for minimization of testing effort,
inspections [3], manual software reviews or automated

models [4], [5] are proposed. A panel at IEEE Metrics 2002
[6] concluded that manual software reviews can find
approximately 60% of faults. Automated models proposed
for fault prediction are useful tools for software
organizations and significantly better in terms of fault
detection performance, compared to other verification ,
validation and testing activities [5][17][18]. These
automated models uses static code attributes such as Lines
of Code (LOC) and the McCabe/Halstead complexity and
other software attributes that can be easily extracted from
source code repositories even for large systems.

Software fault prediction uses various method-level static
code software metrics such as Halstead , Mc- Cabe metrics
etc. to categorize modules and predicting them either fault-
prone(fp) or non-fault prone(nfp) modules by using
classification model derived from the data of projects. In
software fault prediction problems, we have X = {x1, x2, …
xn}where x represents software module that is characterized
by software metrics and Y = {fp,nfp} ,where an unknown
system S predictive model transforms from instances X to
predicted classes Y; Y = S(X). Prediction models based on
software metrics, can estimate number of faults in software
modules as well as which module is faulty. So the
predictive models are easy to use and faster to run for
highlighting fault-prone modules compared to inspections
[4],[5],[7].Fault predictors models are useful tools for
software organizations to manage their testing resources
effectively through focusing on fault-prone software
modules to mprove software quality. Many researchers
have already worked for fault prediction model and various
software metrics and techniques like linear regression,
decision trees, neural networks and Naive Bayes
classification have been analyzed [5][8][9].

This study specifically includes projects of white goods
manufacturer from the Turkish software industry for
embedded systems domain. Embedded systems are used in
many industries such as white goods, automotive,
telecommunications and aerospace [10]. We produce the
experiments on these embedded system software’s with
cluster based classification in order to compare it by Ayse
et al.[23] framework for the same embedded systems. We
use the same pd, pf, precisions and balance in order to
analyze the effectiveness of our framework. Our results
indicate that cluster based classification used after
supervised discretization process may increase the
prediction performance significantly. We implemented
high-performance fault prediction model based on
classification via clustering for benchmarking. We
compared the results of our model with ensembles
methods used in [23] ensemble (Ens1) which includes

Pradeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2348-2354

www.ijcsit.com 2348

ANN, Voting Feature Intervals (VFI) ,Naïve Bayes and
other ensemble(Ens2) which uses Naive Bayes and VFI
algorithm .

In the following section, models used for defect
prediction are explained. After describing the experimental
design, results, and conclusions will be given.

II. RELATED WORK

Researchers have used various methods such as
statistical analysis, regression, Genetic Programming [11],
Decision Trees [12], Neural Networks [13], Naïve Bayes
[5], Case-based Reasoning [14], Fuzzy Logic [15] and
Logistic Regression [16] for software fault prediction.

Elish et al. [17] investigated the performance of Support
Vector Machines (SVMs) and found SVM better than, or at
least is competitive against the other statistical and machine
learning models in the context of four NASA datasets. They
compared the performance of SVMs with the performance
of Logistic Regression, Multi-layer Perceptrons, Bayesian
Belief Network, Naive Bayes, Random Forests, and
Decision Trees. They used correlation based feature
selection technique (CFS) to down select the best predictors
out of the numbers of independent variables in the datasets.
Catal et al. [18] investigated effects of dataset size, metrics
set, and feature selection techniques and found Random
Forests provides the best prediction performance for large
datasets and Naive Bayes is the best prediction algorithm
for small projects. Tomaszewski [19] have conducted
Statistical models vs. expert estimation for fault prediction
and found statistical techniques performed superior to
locate software fault than an expert estimations approach
stating that” When it comes to comparing both methods we
found that statistical models outperformed expert
estimations”.

Gondra’s [20] experimental results showed that Support
Vector Machines provided higher performance than the
Artificial Neural Networks for software fault prediction.
Quah [21] used a neural network model with genetic
training strategy to predict the number of faults, the number
of code changes required to correct a fault, the amount of
time needed to make the changes and he proposed new sets
of metrics for the presentation logic tier and data access tier.
Turhan et al. [22] analyzed the effects of preprocessing of
software defect data from NASA with PCA ,subset
selection and weighted Naive Bayes and concluded that
either pre-processing software defect data with PCA or
using weighted Naive Bayes should be preferred rather than
subset selection for Naïve Bayes models.Menzies et al. [5]
reported that Naive Bayes with logNums filter achieves the
best performance in terms of the probability of detection
(pd-71%)and the probability of false alarm (pf-25%) values
which is are much larger than their prior results of mean
(pd, pf)=(36%, 17%). They also stated that there is no need
to find the best software metrics group for software fault
prediction because the performance variation of models
with different metrics group is not significant and the
choice of learning method is more important. Almost all the
software fault prediction studies use metrics and fault data
of previous software release to build fault prediction models,
which are called ‘‘supervised learning” approaches in

machine learning community. There have been
discussions on finding the best classifier for fault predictors.
Lessmann et al. [35] argued that their 15 best performing
classifiers were statistically indistinguishable from each
other in terms of the area under the receiver operating
characteristic (ROC) curve. The authors did not use any
filtering or transformation techniques. Instead, they used
the algorithms on the original data to measure their
effectiveness on detecting defect-prone modules. Ayse et al
[23] used multiple predictors (classifiers) to produced better
results for locating defects they used an ensemble of
classifiers to predict defects in embedded software and
achieved probability of detection (pd-76%) and the
probability of false alarm (pf-22%) for ensemble (Ens1)
which combines ANN, Voting Feature Intervals(VFI) and
NB and probability of detection (pd-69%) and the
probability of false alarm (pf-17%) by ensemble (Ens2)
which uses only Voting Feature Intervals(VFI) and NB.

We used embedded data from promise repository [25]
which is an open source repository for fault data. Therefore;
all projects used in this study are available online. So, this
work can easily be repeated, improved or refuted by other
researchers [24][22] .We present a defect prediction model
based on cluster based classification for embedded and
mission critical software results reveal probability of
detection (pd-76%) and the probability of false alarm (pf-
9%) which is statistically significant by the earlier models.

Earlier, embedded software’s in systems was only used
to control the hardware. However, the purpose of embedded
systems has grown with the ever-increasing power of
computing given a rise in the demand [26].This increase in
demand makes the software more sophisticated , complex
and hence, more important. Unlike general software
systems, reliability standards always for embedded system
remain very high [48]. Embedded software systems are
reactive in the nature because they have been used in real-
time applications and have real time constraints and are
often safety-critical. Their failures can result in the loss of
human life. So, the impact of residual defects in embedded
software would be much higher than defects in other types
of software. To decrease the cost of fixing defects during
later stages of development life cycle software developers
and testers have to ensure the reliability of software. Tight
schedules and increasing cost of testing, on the other hand,
enforce limited testing which may prevent identifying
severe faults in the software. This dramatically affects
quality attributes, such as timeliness, reliability and
dependability [27]. Therefore, developers in the embedded
software domain need additional techniques to preserve the
reliability of software. As early warning mechanisms,
defect predictors would be very helpful for practitioners in
order to improve product quality in embedded systems in a
shorter time and with fewer resources, compared to other
verification, validation and testing activities [28]. In this
research we use static code attributes as predictor variables.
A complete list of these attributes is available on line in the
Promise repository [24]. Static code attributes used in
defect prediction have been accepted as valuable metrics by
many researchers, for example [5][30].

Pradeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2348-2354

www.ijcsit.com 2349

III. EXPERIMENTAL DESIGN

From an industrial perspective, software managers aim to
decrease their testing efforts while decreasing fault rates,
thereby producing high quality real time systems. We
observed that cluster based classifiers would detect 76% of
the faulty modules with precision of 68%. Also the cluster
based classification decreases the false alarms rates. In
commercial applications, companies need to employ cost
effective oracles, since an increase in false alarms would
waste inspection costs by guiding testers through actually
safe modules. Therefore, in this paper, our objective is
“building a learning-based fault predictor for embedded
systems that would decrease false alarms while producing
high detection rates’’.

We used a cluster-based classification framework in
which fault-prone and not fault-prone modules are
grouped into clusters. In our experiment we use supervised
discretization as preprocessing technique. We first
discretized the data using entropy based supervised
discretization to divide the continuous attributes into the
range intervals. It makes learning more accurate and faster.
After supervised discretization we have applied clustering
technique on processed data to build and effective fault
prediction model. We evaluated this model on embedded
software and then compared this method with a recent
study which is based on ensemble classification for the
same embedded softwares [23].

As indicated by Shull et al. [43], replications help the
software engineering researchers to address internal and
external validity problems. These types of studies also lead
the research community to build a solid knowledge about
the influence of conditions on the experimental results and
observations. In this study, we observed a recent study on
defect predictors for embedded system by Ayse et al [23]
and we have reproduced better results via new techniques
in order to find the better approaches for fault prediction .

Lessman et al. [35] reported that data preprocessing or

engineering activities such as the removal of
noninformative features or the discretization of continuous
attributes may improve the performance of some classifiers
[35]. For example, Menzies et al. report that their Naive
Bayes classifier benefits from feature selection and a log-
filter preprocessor [5].

Discretisation is the transformation of a continuous
variable into a discrete space, grouping together multiple
values of a continuous attribute, and partitioning the
continuous domain into a finite numbers of non-
overlapping intervals. The task of discretizing an input
attribute for classification problems is usually divided into
supervised discretisation, when knowledge interdependency
between the class level and attribute values is used for the
discretization process and unsupervised discretization,
when the class values of the instances are unknown or not
used. The methods for unsupervised discretization are
equal-width and equal-frequency binning. The equal width
divides the range of values of a numerical attribute into a
pre-determined number of equal intervals. The equal
frequency divides the range of values into a pre-determined
number of intervals that contain equal number of instances.

Supervised algorithms are maximum entropy [37],
Patterson and Niblett [39], statistics- based algorithms like
ChiMerge [40] and Chi2 [41].

Fayyad & Irani developed a concept of entropy based
partitioning in [36]. We have used entropy based [46][36]
discretization before classification.

Fayyad & Irani's approach was developed in the context
of decision tree learning that tries to identify a small
number of intervals, each dominated by a single class. They
first suggested binary discretization, which discretizes
values of continuous attribute into two intervals. The
training instances are first sorted in an increasing order, and
the midpoint between each successive pair of attribute
values is evaluated as a potential cut point. The algorithm
selects the best cut point from the range of values by
evaluating every cut point candidate. For each evaluation of
a candidate, the data is discretized into two intervals and the
entropy of the resulting discretization is computed. In a
given a set of instances S ,a feature A, and a partition
boundary T, the class information entropy of the partition
induced by T, denoted E(A,T;S)is given by

E(A,T;S)= S1/S Ent(S1)+S2/S Ent(S2)

For a given feature A, the boundary Tmin which

minimizes the entropy function over all possible partition
boundaries is selected as a binary discretization boundary.
This method can be applied recursively to both of the
partitions induces by Tmin until some stopping condition is
achieved. Fyyad and Irani make use of minimal descriptive
length Principle to determine stopping criteria for their
recursive discretisation process. Recursive partitioning
within a set of value S stops if

Gain(A,T;S)<(log2 (N-1))/N+(∆(A,T;S))/N

Where N is the number of instance in the set,S,

Gain(A,T;S)=Ent(S)-E(A,T;S),

 ∆(A,T;S)=log2(3
k-2)-[k.Ent(S)-k1.Ent(S1)-k2.Ent(S2)],

and ki is the number of class labels represented in the set S.
Since the partitions along each branch of the recursive
discretisation are evaluated independently using this criteria,
some areas in the continuous space will be partitioned very
finely whereas other which has relatively low entropy will
be partitioned coarsely.
Once the discretisation process has been completed, the
discretized data is used by cluster based classification
algorithm for building the predictive model. Clustering is
one method to find most similar groups from given data,
which means that data belonging to one cluster are the most
similar; and data belonging to different clusters are the most
dissimilar. Any clustering algorithm such as the hard c-
means, mountain clustering algorithms can be used. We
have used the Simple k-means clustering algorithm that
uses a fixed number of clusters. The number of cluster
made by our algorithm is equal to the number of classes of
data i.e. two one for faulty and other for not faulty. In our
approach we have not used the class labels for cluster

Pradeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2348-2354

www.ijcsit.com 2350

building .Finally after building clusters mapping is done on
the basis of lowest error. A particular class label can be
associated with at most one cluster. To overcome the
sampling bias we have used M*N-way cross validation
where both M and N are selected as 10 [44]. We create 10
stratified bins: 9 of these 10 bins are used as training sets
and the last one is used as the test set. We randomize the
dataset M = 10 times and create N = 10 sets in each
iteration. We apply clustering based classification algorithm
on the preprocessed embedded fault dataset. Finally we
have compared our result with the Ens1 and Ens2 used by
[23] for fault prediction of embedded systems. The pseudo
code of the model is shown below in Fig. 1.

Procedure Evaluation data Learning (data, scheme)
Input: data - the data on which the learner is built, AR3,
AR4, AR5]
Learners- The learning scheme.
[Cluster_based_classification]
Output Result [D_pd, D_pf, D_prec,D_bal] = D_predictor
on TEST pd,pf, precision and balance over M*N way cross
validation.
Preprocessing = {supervised discretisation}
M=10;N=10;
FOR each data
D_Data = apply supervised discretisation //discretization of
data
// construct predictor from D_Data

For 1=1 to M
T=Generate N parts of each D_Data
For J =1 to N do
Test=T[j]
Train=T- T[j]
 Model=Apply learning scheme on Train
 D_Prediction =Apply Model to test
End for

End for
//Evaluate predictors on the test data
 [D_pd ,D_pf, D_prec, ,D_balance] = D_ predictor on
TEST
End for

Figure 1: Algorithm for Software fault prediction

IV. DATA SOURCE

We use data which is publicly available in the Promise
Data Repository [25]. The three embedded projects AR3,
AR4, AR5 are from Turkish white good manufacturer
Software Company. Each data set is encompassed of
several software modules, together with their static code
attributes and associated corresponding number of faults.
After metric and bug data extraction from software
repositories , modules that contain one or more bugs were
marked as fault prone (fp), and where no bug were reported
those modules were treated as non fault prone (nfp). The
fault data sets which are taken from promise repository
includes LOC counts, several Halstead attributes, McCabe
complexity measures as well as various other static code
attributes. Individual software metric feature per data set,

together with percentage faulty modules and some general
descriptions are given in Table 1.

 TABLE 1: DATA SET USED IN THE STUDY

Source No of
Module

Features LOC %
Faulty

Language

AR3 63 29 5624 12.7 C
AR4 107 29 9196 18 C

AR5 36 29 2732 20 C

A. Performance Measures

The accuracy and performance of prediction models for
two-class problem, defective or not defective is typically
evaluated using a confusion matrix. A confusion matrix
contains information about actual and predicted
classifications done by a classification system. In this study,
we used the commonly used prediction performance
measures: probability of detection (pd), probability of false
alarm (pf), precision (prec), balance (bal) to evaluate and
compare prediction models quantitatively. These measures
are derived from the confusion matrix.

A confusion matrix

 Actual Faulty Module Not Faulty
Module

Predicted

Faulty Module TP(True
positive)

FP (False
positive)

Not Faulty
Module

 FN (False
negative)

TN (True
Negative)

False alarms, pf, should be 0, meaning that the predictor
should never label a fault-free module as faulty. In general,
an increase in pd would also increase pf rates since the
model triggers more often to achieve the ideal case [5]. To
see how close our estimates are to the ideal case, we use a
balance metric, which is the Euclidean distance between the
ideal point and where we are on the ROC curve in reality.
Precision is also known as correctness. It is defined as the
ratio of the number of modules correctly predicted as
defective to the total number of modules predicted as
defective.

pd =TP/(TP+FN)
pf =FP/(FP+TN)

The higher the precision, the less effort wasted in testing
and inspection. It has a strong relation with pd and pf, such
that when pd is fixed for a dataset, pf rate is controlled by
precision and the class distribution of the data [5]

FPTP

TP

Precision

Pradeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2348-2354

www.ijcsit.com 2351

V. RESULTS

A novel approach Cluster based classification (CBC)
method used in this research to improve the performance of
fault prediction methods to detect more defects and to
produce as low false alarms as possible. We compare CBC
with the model proposed on embedded datasets (Aysre et al.
2011), AR3, AR4, and AR5 to validate its performance. We
found that our results are outperforming with their study,
so we can confirm that the CBC approach is worth using in
the context of embedded software. In Table 2, the
prediction performances of CBC and the model of Aysre et
al. [23] are presented. Comparison of CBC with Ens1
which is consists of ANN, NB, VFI, and Ens2 (ANN,NB),
in embedded datasets on the basis of pd(probability of
detection). From the results, we could argue that CBC
achieves good results for embedded datasets. Our model
outperformed in comparison with the results of Ens1 of
Aysre et al. 2011 in terms of pf. on average from 22% to
9% .When we analyze our cluster based classification for
all embedded projects, the average performance is (76%,
9%) in terms of (pd, pf).

CBC also outperformed of Ens2 which is improved
ensemble by Aysre et al. 2011 in terms of pf on average
from 17% to 9% and in pd on average from 69% to 76%.
Ens1 consist if of ANN, NB and VFI algorithms. The
strength of these three is combined to achieve better
predictions by creating ensemble Ens1. So it is a good
practice to check individual performances of the algorithms.
Thus, we compared our model with the result of each
algorithm to evaluate each of the algorithms, whose results
pd, pf, precision and balance are illustrated Tables in 2, 3, 4
and 5 for all embedded projects.

Our model decreases false alarms by 13%, and hence
increases precisions by 22 % in comparison with Ens1,
Mann–Whitney U tests show that these rates of our models
are significantly high. Therefore we can conclude that our
model is useful and is outperforming for the embedded
systems. Mann–Whitney U test shows that the pf rates of
two models are significantly different when we compare pf
with the results of [23] for Ens1 for all embedded projects.

TABLE 2: COMPARISON OF CBC WITH ENS1, ANN, NB, VFI, AND ENS2

(AYSRE ET AL. 2011), IN EMBEDDED DATASETS ON PD (PROBABILITY OF

DETECTION)

Dataset Our Ens1 ANN NB VFI Ens2

AR3 0.714 0.62 0.12 0.62 0.62 0.62

AR4 0.55 0.8 0.45 0.75 0.80 0.70

AR5 1 0.85 0.50 0.75 0.87 0.79

Avg 0.76 0.76 0.36 0.71 0.76 0.69

This shows us in our case, defect prediction using an CBC
model would definitely be helpful and outperformed than
ensemble Ens2 and ANN, NB, for detecting as many
defects as possible and, hence, reducing testing effort. It
would correctly classify defective modules and guide
developers to fewer modules to inspect rather random
reviews.

TABLE 3: COMPARISON OF CBC WITH ENS1, ANN, NB, VFI, AND ENS2

(AYSRE ET AL. 2011), IN EMBEDDED DATASET ON PF (PROBABILITY OF

FALSE ALARM)

Dataset Our Ens1 ANN NB VFI Ens2

AR3 0.018 0.2 0.31 0.32 0.14 0.13
AR4 0.115 0.36 0.43 0.32 0.43 0.29

AR5 0.143 0.1 0.43 0.10 0.21 0.10

Avg 0.092 0.22 0.39 0.25 0.26 0.17

From the results, of Table 3 we could argue that CBC
achieves good results for embedded datasets. We
outperform the results of Aysre et al. 2011 in terms of pf on
average from 39% to 9% for ANN. In pf Mann– Whitney
tests: CBC is significant outperformed than Ens1, Ens2 and
also from constitute of Ens1(ANN,NB,VFI). Therefore we
can conclude that our model is decreasing false alarm and is
useful for the embedded systems, performing better than the
Ens1 consists of ANN, NB and VFI algorithms [23].

TABLE 4: COMPARISON OF CBC WITH ENS1, ANN, NB, VFI, AND ENS2

(AYSRE ET AL. 2011), IN EMBEDDED DATASET ON PRECISION

Dataset Our Ens1 ANN NB VFI Ens2

AR3 0.83 0.31 0.05 0.22 0.39 0.41

AR4 0.52 0.34 0.19 0.35 0.30 0.36

AR5 0.667 0.71 0.25 0.68 0.54 0.68

Avg 0.675 0.45 0.17 0.42 0.41 0.48

Table 4shows the comparison of CBC with Ens1, ANN, NB,
VFI, and Ens2 (Aysre et al. 2011) using precision. In
precision Mann– Whitney tests: CBC is significant
outperformed than Ens1 .Therefore we can conclude that
our model is useful for the embedded systems and is
performing better than the Ens1 consists of ANN, NB and
VFI algorithms [23].Also our model is outperforming than
the all constitute of Ens1(ANN,NB,VFI) and Ens2.

There is significant increase in precision rates from 45%
in Ens1, 48% in Ens2 to 67.5% in our model.
Also it decreases false alarms by 13%, and hence increases
precision by 22 %. From table 5 Mann–Whitney U tests
show that the balance rates of two models are significantly
different. Therefore we can conclude that our model is
useful and is outperforming for the embedded systems.

TABLE 5: COMPARISON OF CBC WITH ENS1, ANN, NB, VFI, AND ENS2

(AYSRE ET AL. 2011), IN EMBEDDED DATASET ON BALANCE

Dataset Our Ens1 ANN NB VFI Ens2

AR3 0.79 0.69 0.34 0.64 0.71 0.72
AR4 0.67 0.70 0.50 0.71 0.66 0.70

AR5 0.898 0.81 0.53 0.80 0.82 0.81

Avg 0.79 0.73 0.46 0.72 0.73 0.74

Pradeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2348-2354

www.ijcsit.com 2352

We validated the performance of CBC on embedded
datasets to compare with both Ens1 and En2 the model of
Ayse et al. (20011). From Table 3,4, and 5, it is easily seen
that the CBC significantly improve false alarms, precision
and balance rates for embedded system fault prediction.
As from result Tables, Ens1 produces (76%, 22%, 45%,
73%) in terms of (pd, pf, prec, bal) on embedded datasets,
whereas our CBC approach produced (76%, 9%, 67%, 79%)
respectively which in term significantly reduces false
alarms by 13% from Ens1 and 8 % from Ens2 .It also
increases the precision by 19% from Ens1 and 18% from
Ens2. Therefore, CBC is much better for embedded system
software in terms of the confidence (precision) and false
alarm of predictions.

VI. CONCLUSIONS

We presented a CBC method and process for software
fault prediction. We have conducted several experiments in
order to compare the performances of our model. The
effectiveness of the method is demonstrated using several
embedded dataset from promise repository. We employed
statistical methods to assess the validity of our results; we
have conducted the Mann–Whitney U test to evaluate
whether the changes in pf, precision and balance can be
significantly validated. Statistical tests prove the validity of
our results in terms of false alarms, precision and balance.
We conclude that discretization on software defect data
with Fayyad & Irani’s [36] supervised discretization should
be preferred and CBC approach perform better than Ens1or
Ens2 [23]. The time complexity of ensemble methods,
increases rapidly with dimensionality of the data and is
constructed by constitution of various algorithms. But our
method uses a single CBC technique and is also good for
huge data. From a software practitioner’s point of view,
these results are useful for detecting faults before
proceeding to the test phase. In this sense, test resources can
be managed more efficiently. The contributions of this
research are two folds: In empirical studies replications are
very important to improve, refute, and validate the results
of others [5, 45]. Ayse et al. donated data to the promise
repository which is publicly available to encourage other
researchers to repeat, improve or refute their study; our
work is the first response to their call. This research is not
only a replication study, but also provides an effective
software fault predictor model for embedded dataset.

 On all projects, our model detects 76% defective
modules while producing 9% false alarms. Our model
significantly improves the precision from 48% to 67%.It
also manages to improve the balance rates from 74% to
79% on average (all projects). Furthermore we will attempt
to use intelligent computing for data preprocessing or
activities for the removal of non informative features to
improve the performance of software fault prediction
models.

REFERENCES
[1] M.J. Harrold, Testing: a roadmap, in: Proceedings of the

Conference on the Future of Software Engineering, ACM Press,
New York, NY, 2000.

[2] B.V. Tahat, B. Korel, A. Bader, “Requirement-based automated
black-box test generation” in: Proceedings of the 25th Annual

International Computer Software and Applications Conference,
Chicago, Illinois, 2001, pp. 489–495

[3] Wohlin, C., Aurum, A., Petersson, H., Shull, F., & Ciolkowski, M.
(2002). “Software inspection benchmarking— A qualitative and
quantitative comparative opportunity”. In METRICS ’02:
Proceedings of the 8th international symposium on software metrics
(pp. 118–127). IEEE Computer Society.

[4] Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of
object-oriented design metrics as quality indicators. IEEE
Transactions on Software Engineering. IEEE Press, 22, 751–761

[5] Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static
code attributes to learn defect predictors. IEEE Transactions on
Software Engineering, IEEE Computer Society, 32(11), 2–13

[6] F. Shull, V.B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port, I.
Rus, R. Tesoriero, and M. Zelkowitz, “What We Have Learned
About Fighting Defects,” Proc. Eighth Int’l Software Metrics Symp.,
pp. 249-258, 2002

[7] Tosun, A., Turhan, B., & Bener, A. (2009).” Practical
Considerations in Deploying AI for defect prediction: A case study
within the Turkish telecommunication industry”. In PROMISE’09:
Proceedings of the first international conference on predictor
models in software engineering. Vancouver, Canada.

[8] N. Nagappan and T. Ball, “Static Analysis Tools as Early Indicators
of Pre-Release Defect Density”, Proc. Intl Conf. Software Eng.,
2005.

[9] T. Khoshgoftaar and E. Allen, “Model Software Quality with
Classification Trees,” Recent Advances in Reliability and Quality
Eng., pp. 247-270, 2001.

[10] Li, Q., & Yao, C. (2003). Real-time concepts for embedded systems.
San Francisco: CMP Books.

[11] M. Evett, T. Khoshgoftaar, P. Chien, E. Allen, “GP-based software
quality prediction”, in: Proceedings of the Third Annual Genetic
Programming Conference, San Francisco, CA, 1998, pp. 60–65.

[12] T.M. Khoshgoftaar, N. Seliya, “Software quality classification
modeling using the SPRINT decision tree algorithm”, in:
Proceedings of the Fourth IEEE International Conference on Tools
with Artificial Intelligence, Washington, DC, 2002, pp. 365–374.

[13] M.M. Thwin, T. Quah, “Application of neural networks for software
quality prediction using object-oriented metrics”, in: Proceedings of
the 19th International Conference on Software Maintenance,
Amsterdam, The Netherlands, 2003, pp. 113–122.

[14] K. El Emam, S. Benlarbi, N. Goel, S. Rai, “Comparing case-based
reasoning classifiers for predicting high risk software components”,
Journal of Systems and Software 55 (3) (2001) 301–320.

[15] X. Yuan, T.M. Khoshgoftaar, E.B. Allen, K. Ganesan, “An
application of fuzzy clustering to software quality prediction”, in:
Proceedings of the Third IEEE Symposium on Application-Specific
Systems and Software Engineering Technology, IEEE Computer
Society, Washington, DC, 2000, pp. 85.

[16] H.M. Olague, S. Gholston, S. Quattlebaum, “Empirical validation of
three software metrics suites to predict fault-proneness of object-
oriented classes developed using highly iterative or agile software
development processes”, IEEE Transactions on Software
Engineering 33 (6) (2007) 402–419.

[17] K.O. Elish, M.O. Elish, “Predicting defect-prone software modules
using support vector machines”, Journal of Systems and Software
81 (5) (2008) 649–660.

[18] Catal C, Diri B. ”Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction
problem”, Information Sciences. 179:pp.1040-1058,2009.

[19] P. Tomaszewski, J. Hakansson, H. Grahn, and L. Lundberg,
“Statistical models vs. expert estimation for fault prediction in
modified code-an industrial case study”, The Journal of Systems
and Software, vol. 80, no. 8, pp. 12271238, 2007.

[20] I. Gondra, “Applying learning to software fault machine -proneness
prediction”, Journal of Systems and Software 81 (2) (2008) 186–
195.

[21] T. Quah, “Estimating software readiness using predictive models”,
Information Sciences, 2008

[22] B. Turhan and A. Bener, Analysis of Naive Bayes Assumptions on
Software Fault Data: An Empirical Study, Data & Knowledge Eng.,
vol. 68, no. 2, pp. 278-290, 2009.

[23] Ayse Tosun Misirli, Ayse Basar Bener, Burak Turhan: “An
industrial case study of classifier ensembles for locating software
defects”. Software Quality Journal 19(3): 515-536 (2011)

Pradeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2348-2354

www.ijcsit.com 2353

[24] Boetticher, G., Menzies, T., & Ostrand, T. J. (2007). “The
PROMISE repository of empirical software engineering data “West
Virginia University, Lane Department of Computer Science and
Electrical Engineering.

[25] http://promise.site.uottowa.ca/SERepository
[26] Amasaki, S., Takagi, Y., Mizuno, O., & Kikuno, T. (2005).

“Constructing a Bayesian belief network to predict final quality in
embedded system development.” IEICE Transactions on
Information and Systems, 134, 1134–1141.

[27] Kan, S. H. (2002). Metrics and models in software quality
engineering. Reading: Addison-Wesley.

[28] Oral, A. D., & Bener, A. (2007). “Defect Prediction for Embedded
Software”. ISCIS ’07: Proceedings of the 22nd international
symposium on computer and information sciences (pp. 1–6).

[29] T.M. Khoshgoftaar, N. Seliya, “Fault prediction modeling for
software quality estimation: comparing commonly used techniques”,
Empirical Software Engineering 8 (3) (2003) 255–283

[30] Zhong, S., Khoshgoftaar, T.M., and Seliya, N., “Analyzing
Software Measurement Data with Clustering Techniques”, IEEE
Intelligent Systems, Special issue on Data and Information Cleaning
and Pre-processing, Vol (2), 2004, pp. 20-27.

[31] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, “Assessing
Predictors of Software Defects,” Proc. Workshop Predictive
Software Models, 2004.

[32] Fenton, N., Neil, M., “A Critique of Software Defect Prediction
Models”, IEEE Transactions on Software Engineering, Vol 25(5),
1999, pp.675-689.

[33] M. Halstead, Elements of Software Science. Elsevier, 1977.
[34] T. McCabe, “A Complexity Measure,” IEEE Trans. Software

Eng.,vol. 2, no. 4, pp. 308-320, Dec. 1976.
[35] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. “Benchmarking

classification models for software fault prediction”: A proposed
framework and novel findings. IEEE Transactions on Software
Engineering, 2008.

[36] U. M. Fayyad and K. B. Irani,” Multi-interval discretisation of
continuous-valued attributes," in Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence. 1993, pp.
1022-1027,

[37] D. Chiu, A. Wong, and B. Cheung, “Information Discovery through
Hierarchical Maximum Entropy Discretization and Synthesis,”
Knowledge Discovery in Databases, G. Piatesky-Shapiro and W.J.
Frowley, ed., MIT Press, 1991.

[38] X. Wu, “A Bayesian Discretizer for Real-Valued Attributes,” The
Computer J., vol. 39, 1996.

[39] A. Paterson and T.B. Niblett, ACLS Manual. Edinburgh: Intelligent
Terminals, Ltd, 1987

[40] R. Kerber, “ChiMerge: Discretization of Numeric Attributes,” Proc.
Ninth Int’l Conf. Artificial Intelligence (AAAI-91), pp. 123-128,
1992.

[41] H. Liu and R. Setiono, “Feature Selection via Discretization,” IEEE
Trans. Knowledge and Data Eng., vol. 9, no. 4, pp. 642-645, July/
Aug. 1997.

[42] Dougherty, J., Kohavi, R., and Sahami, M. (1995), “Supervised and
Unsupervised discretization of continuous features”. Machine
Learning 10(1), 57-78.

[43] Shull, F. J., Carver, J. C., Vegas, S., & Juristo, N. (2008). The role
of replications in empirical software engineering. Empirical
Software Engineering Journal, 13, 211–218.

[44] Hall, M. A., & Holmes, G. (2003). “Benchmarking attribute
selection techniques for discrete class data mining” IEEE
transactions on knowledge and data engineering. IEEE Educational
Activities Department, 15, 1437–1447.

[45] J. Lung, J. Aranda, S.M. Easterbrook, G.V. Wilson, “On the
difficulty of replicating human subjects studies in software
engineering”, in: Proceedings of the 30th International Conference
on Software Engineering, 2008, pp. 191–200.

[46] P. Singh and S. Verma, “An investigation of the effect of
discretization on defect prediction using static measures”, in
Advances in Computing, Control, Telecommunication Technologies,
ACT 09. International Conf on, 2009, pp. 837- 839.

[47] J. MacQueen. “Some methods for classification and analysis of
multivariate observations”. In Proc. 5th Berkeley Symp. Math.
Statistics and Probability, pages 281-297, 1967.

[48] Lee, E. A. (2002). Embedded software, advances in computers
London: Academic Press.

Pradeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2348-2354

www.ijcsit.com 2354

